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Abstract 

We describe FATCOP, a new parallel mixed integer program solver written in PVM. 
The implementation uses the Condor resource management system to provide a virtual 
machine composed of otherwise idle computers. The new solver differs from previous 
parallel branch-and-bound work by implementing a general purpose parallel mixed integer 
programming algorithm in an opportunistic multiple processor environment, as opposed 
to a conventional dedicated environment. It shows how to make effective use of resources 
as they become available while ensuring the program tolerates resource retreat. The 
solver performs well on test problems arising from real applications, and is particularly 
useful for solving long-running hard mixed integer programming problems. 

1    Introduction 

Mixed integer programming (MIP) problems are difficult and commonplace. For many of 
these hard problems, only small instances can be solved in a reasonable amount of time on 
sequential computers. Therefore, mixed integer programming has been a frequently cited 
application of parallel computing. Most available general-purpose large-scale MIP codes 
use branch-and-bound (BB) to search for an optimal integer solution by solving a sequence 
of related linear programming (LP) relaxations that allow possible fractional values. This 
paper discusses a new parallel mixed integer program solver, written in PVM, that runs in the 
opportunistic computing environment provided by the Condor resource management system. 

Parallel BB algorithms for MIP have attracted many researchers [9, 13, 15]. Most parallel 
BB programs were developed to run using large centralized mainframes or big-iron supercom- 
puters that are typically very expensive. Users of these facilities usually only have a certain 
amount of time allotted to them and have to wait their turn to run their jobs. However, 
due to the decreasing cost of lower-end workstations, large heterogeneous clusters of work- 
stations connected through fast local networks are becoming common in work places such as 
universities, research institutions, etc.  In this paper we shall refer the former resources as 
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dedicated resources and the later as distributed ownership resources. The principal goal of 
the research outlined in this paper is to exploit distributed ownership resources to solve large 
mixed integer programs. We believe that a parallel BB program developed to use this type 
of resource will become a widely used tool for such problems. 

PVM (parallel virtual machine) [12] is a parallel programming environment that allows a 
heterogeneous network of computers to appear as a single concurrent computational resource. 
It provides a unified framework within which parallel programs for a heterogeneous collection 
of machines can be developed in an efficient manner. However PVM is not sufficient for 
us to develop an efficient parallel BB program in a distributed ownership environment. The 
machines in such an environment are usually dedicated to the exclusive use of individuals. The 
application programming interface defined by PVM requires users explicitly select machines 
on which to run their programs. Therefore they must have permission to access the selected 
machines and cannot be expected to know the load on the machines in advance. Furthermore, 
when a machine is claimed by a PVM program, the required resources in the machine will be 
"occupied" during the life cycle of the program. This is not a desirable situation when the 
machine is owned by a person different from the user of the program. 

Condor [6, 10, 17], a distributed resource management system, can help to overcome the 
problems a normal PVM program runs into. Condor manages large heterogeneous clusters 
of machines in an attempt to make use of the idle cycles of some users' machines to help 
satisfy the needs of others who have computing extensive jobs. It was first developed to run 
sequential programs. The current version of Condor provides a Condor-PVM framework to 
run parallel programs written in PVM in a distributed ownership environment. In such pro- 
grams, Condor is used to dynamically construct PVM virtual machine out of non-dedicated 
desktop machines on the network. Condor allows users' programs to run on any machine 
in the pool of machines managed by Condor, regardless of whether the user submitting the 
job has an account there or not, and guarantees that heavily loaded machines will not be 
selected for an application. To protect a machine's owner, Condor interrupts a running job in 
a machine submitted by another user after the machine's owner returns. Since resources man- 
aged by Condor are competed for by owners and many other Condor users, we refer to such 
resources as Condor's opportunistic resources and the Condor-PVM parallel programming 
environment as the Condor-PVM opportunistic environment. 

FATCOP represents a first attempt to develop a general purpose parallel solver for mixed 
integer programs in Condor's opportunistic environment. It is implemented on top of SO- 
PLEX , a simplex object-oriented linear programming solver developed by Roland Wunderling 
[26]. FATCOP is written in the C++ programming language with calls to PVM library. It is 
designed to make best use of participating resources managed by Condor while handling re- 
source retreat carefully in order to ensure the eventual and correct completion of a FATCOP 
job. Key features of FATCOP include: 

• parallel implementation under Condor-PVM framework; 

• greedy utilization of Condor's opportunistic resources; 

• tolerance to resource failures; 

• options on branching, searching and presolving similar to commercial software such as 
CPLEX; 

• the ability to process both industrial standard MPS format and GAMS model as input; 



The remainder of this paper is organized as follows. Section 2 describes the BB algorithm 
and the components of FATCOP that are implemented to ensure the BB algorithm generates 
a reasonable search tree. Section 3 introduces Condor-PVM parallel programming framework 
and the design of our parallel implementation. In section 4, we present some numerical results 
that exhibit important features of FATCOP. 

2    Components of Sequential Program 

For expositional purposes, we review the basic sequential implementation of a BB MIP solver. 
A MIP can be stated mathematically as follows: 

min   cTx 
s.t.    Ax < b 

I < x <u 
XJ ez       Mjel 

where Z denotes the integers, A is an m x n matrix, and 7 is a set of distinguished indices 
identifying the integer variables. 

Most integer programming textbooks [1, 20] describe the fundamental branch-and-bound 
algorithm for the above MIP problem. Basically, the method explores a binary tree of sub- 
problems. The key steps of BB are summarized below and the algorithm flowchart can be 
found as Figure 1. 
Algorithm Branch-and-Bound: 

Step 0.    Initialization: 
Set iteration count k = 0 and incumbent (or upper bound of the MIP) Z* — oo. 
Put the initial problem in the work pool containing subproblems that are not 
examined yet. 

Step 1.    Branching: 
Among the remaining subproblems in the work pool, select one according to some 
search order. Among the integer-restricted variables that have a noninteger value in 
the optimal solution for the LP relaxation of this subproblem, choose one according 
to some branching rule to be the branching variable. Let XJ be this variable and 
denote by X*A its value in the aforementioned solution. Branch from the node for the 
subproblem to create two new subproblems by adding the respective constraints 
Xj < [x*\ and Xj > [x*\ + 1. 

Step 2.    Bounding: 
For each new subproblem, obtain its bound by applying the simplex method (or the 
dual simplex method when reoptimizing) to its LP relaxation and use the value 
of ZLP for the resulting optimal solution. The minimum value of such bounds 
associated with subproblems in the work pool is referred to as lower bound of the 
MIP. 

Step 3.    Fathoming: 
For each new subproblem, apply the three fathoming tests given below, and discard 
those subproblems that are fathomed by any of the tests. 
Test 1: Its bound ZLP > Z*. 
Test 2: Its LP relaxation has no feasible solutions. 
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Figure 1: Branch-and-bound algorithm 

Test 3: The optimal solution for its LP relaxation has integer values for the integer- 
restricted variables. If this solution is better than the incumbent, it becomes the 
new incumbent and Test 1 is reapplied to all unfathomed subproblems with the 
new Z*. 

Optimal test: 
Stop when there are no remaining subproblems. The current incumbent is optimal. 
Otherwise, go to step 1. 

The above description makes it clear that there are various choices to be made during the 
course of the algorithm. We hope to find robust strategies that work well on a wide variety of 
problems. The reminder of this section describes the algorithm components and FATCOP's 
interfaces. 

2.1     Branching rules 

If there are many fractional variables in the solution to the LP relaxation, we must choose 
one variable to be the branching variable. Because the effectiveness of the branch and bound 
method strongly depends on how quickly the upper and lower bounds converge, we would 
like to branch on a variable that will improve these bounds. 

Several reasonable criteria exist for selecting branching variables.   FATCOP currently 
provides three variable selection options: pseudocost, maximum integer infeasibility and min- 



imum integer infeasibility. Maximum integer infeasibility will generate two branches that are 
more likely to differ from the current solution than other branch alternatives. The underlying 
assumption is that the objective function values are more likely to degrade on both branches. 
Hence such a branch would represent an influential variable. Minimum integer infeasibility 
will generate one branch very similar to the current solution and one branch very different 
from the current solution. The underlying assumption is that the similar branch is where a 
solution lies and that the different branch will prove uninteresting [1]. Pseudocost attempts 
to estimate the change rate in objective function value associated with a particular branch. 
Since the pseudocost method is widely iised and known to be efficient [16], we set it as the 
default branching strategy and briefly describe the method here. 

We associate two quantities <fij and (/& with each integer variable Xj that attempts to 
measure the per unit decrease in objective function value if we fix Xj to its rounded down 
value and rounded up value, respectively. Suppose that Xj = \XJ\ + fj, with 0 < fj < 1. 
Then by branching on XJ, we will estimate a decrease of DJ = </>7/j on the down branch and 

a decrease of Dj~ — <frt{l — fj) on the up branch . The way to obtain the objective change 

rate <pj and (/>+ is to use the observed change in objective function value: 

zLP - zLP   anA     .     Z+p - ZLP 

9] 1-fj 
^=    LP ,    ^    and 

where ZIP is the LP relaxation solution value, and Z~£p and Z^p are the LP relaxation 
solution values at up and down branches respectively. Note that the above discussion is for 
a particular node. 

In the course of the solution process, the variable Xj may be branched on many times. 
The pseudocosts are updated by averaging the values from all Xj branches. The remaining 
issue is to determine to what values should the pseudocost be initialized. The question of 
initialization is important, since the branching decisions made at the top of the tree are the 
most crucial. If similar MIP problems have been solved before, we can use the previous results 
to initialize pseudocosts for integer variables. If previous results are not available, we can 
explicitly solve LPs to compute pseudocosts for candidate branching variables which have not 
been branched yet. Our computational experience show that it is expensive to compute these 
values explicitly, especially in case that the number of integer variables is large. Therefore, we 
simply initialize the pseudocost Xj with its corresponding coefficient in the objective function 
c,;. When taking a branching decision for subproblem P, the algorithm calculates a score Sj 
for each Xj as suggested in [9]: 

Sj = aQpj +a\DJ +a2Dj; 

where pj is the user specified priority for Xj, pj = 0 if the priority is not specified, ceo, «1,0:2 
are some constants, a.o usually is very big so that user specified priorities are predominant. 
Normally the branching candidate variable with highest priority will be selected. 

2.2    Searching rule 

FATCOP provide five options for selecting a node from the remaining nodes: 

1. Depth-first: The depth-first rule selects the node that was created most recently. The 
depth-first rule has the advantage that it needs very small memory and usually finds a 
feasible solution quickly. 



2. Best-first: The best-first rule, as its name suggests, always selects the current node to 
be the one whose LP solution is the smallest. Since the best-first rule always select the 
most attractive subproblem, it will improve the algorithm's convergence speed. 

3. Pseudocost-estimation: An estimation for the optimal value of an integer solution for 
a node can be obtained from its LP solution and its branching candidates' pseudocost: 

E = ZLP+ Y. mm{Df,Dr} 
je{all branching candidates} 

The pseudocost-estimation strategy selects the node with the best estimation from the 
remaining nodes. Like depth-first search, it requires small memory and usually can 
find good feasible solutions quickly. Therefore, pseudocost-estimation is often used to 
attack complex MIP problems when the provable optimal solution is hard to obtain. 

4. A mixed strategy of 1 and 2: This strategy expands the subproblems in the best- 
first order, with an initial depth-first phase. The mixed strategy takes the advantage 
of quickly finding a feasible solution by depth first, and fastest convergence by best 
first. The central issue of this strategy is when the program should switch from 1 to 2. 
Eckstein [9] suggested to compare the lower bound and upper bound of a MIP problem, 
i.e. the BB algorithm pursues depth-first search as long as the the upper bound and 
lower bound differs at least some fixed threshold percentage. Afterwards it expands 
problems with best-first. When designing FATCOP, we propose to keep track of the 
information about the number of node evaluations over which the best integer solution 
has not been updated. FATCOP switches searching strategy from 1 to 2 after this 
number exceeds a pre-specified fixed number. In practice we found that it was useful 
to perform a short trial solve test on a MIP problem using depth-first strategy. If we 
observe that the incumbent value keeps unchanged for long time after it was updated 
for Ü times in the trial solve process, we then can let the program switch searching 
rule at that point when we solve this problem using the mixed searching strategy. If U 
is set to 0, the program will use pure best-first strategy, while U = oo implies a pure 
depth-first strategy. 

5. A mixed strategy of 1 and 3: This strategy is similar to strategy 4, but starts the 
algorithm with pseudocost-estimation search first. Since pseudocost-estimation often 
finds better solutions than depth first does, strategy 5 is set as default searching strategy 
for FATCOP. 

2.3    Preprocessing 

Preprocessing refers to a set of simple reformulations performed on a problem instance to en- 
hance the solution process. FATCOP incorporates some preprocessing techniques to identify 
infeasibility and redundancies, to tighten bounds on variables, and to improve coefficients 
of constraints. Preprocessing may reduce the size of a MIP problem as well as the integral- 
ity gap, i.e., the difference between the optimal solution value and its LP relaxation. More 
techniques for preprocessing and probing can be found in [24]. 

Without loss of generality we assume that the inequality currently under consideration is 
of the form: 

YL aJxJ ^ b 

j 



Define: 

lj   The lower bound of variable XJ; 

UJ    The upper bound of variable Xj\ 

Lmin   The minimum possible value for left hand side of the constraint ; 

Lmax   The maximum possible value for left hand side of the constraint ; 

L^in    The minimum possible value for left hand side of the constraint without the term 

ak*k\ 
Lmax   The maximum possible value for left hand side of the constraint without the term 

akxk; 

The following techniques may allow problem reduction: 

1. Simple presolving methods: 

• remove empty row or column 

• check infeasible or fixed variable: lj > Uj or lj = Uj 

• remove singleton row and modify the corresponding bounds. 

2. Identification of infeasibility: 

3. Identification of redundancy: 

4. Improvement of bounds: For each variable xk in the constraint, we have: 

Lmin + akxk < Yl aixi ^ b 

3 

Then: 
akxk <b- Lk

min 

If ak > 0, 
xk < min{(6 - L^in)/ak,uk} 

If ak < 0, 
xk > max{(6 - Lk

min)/ak, lk] 

If xk is an integer constrained variable, the new upper and lower bounds should be 
rounded down and up. 

5. Improvement of coefficients: Define 8 = b — Z£,oa;. If xk is a binary variable and 5 > 0. 
Both ak and b can be reduced by 6. One can easily checks the validity by setting xk to 
0 and 1 respectively. 

At the root node, FATCOP analyzes every row of the constraint matrix using the above 
techniques. If, after processing, some variables are fixed or some bounds are improved, the 
process is repeated until no further model reduction occurs. 



2.4 Reduced Cost Checking 

After solving subproblem P, one checks the LP reduced costs of all integer variables Xj that, 
are not basic. If the absolute value of such a reduced cost exceeds Z* — Z^p, then Xj is 
fixed at its present value in all of P's descendents. The reduced cost of variable Xj represents 
the objective function value changing rate with respective to Xj. Therefore any descendant 
solution with a different but still integral value of Xj would be bigger than Z*, hence would 
necessarily be fathomed. 

2.5 Interfaces 

FATCOP accepts industrial standard MPS input as well as GAMS models. MPS [19] input 
format was originally introduced by IBM to express linear and integer programs in a standard 
way. All commercial LP and MIP software accept this format. 

GAMS [4] is a high-level modeling system for mathematical programming. It takes as 
input a description of a mathematical program in a form that people find reasonably natural 
and convenient, and allows the solution output to be viewed in similar terms. GAMS is 
tailored for complex, large scale modeling applications, and allows users to build large main- 
tainable models that can be adapted quickly to new situations. We interfaced FATCOP to 
GAMS using the GAMS 10 library. With the GAMS interface, FATCOP is able to exploit 
larger classes of MIP problems. 

3    Condor-PVM parallel implementation of FATCOP 

In this section we first give a brief overview of Condor, PVM and the Condor-PVM parallel 
programming environment. Then we discuss the parallel scheme we selected for FATCOP 
and the differences between normal PVM and Condor-PVM programming. At the end of the 
section, we present a detailed implementation of FATCOP. 

3.1     Condor-PVM Parallel Programming Environment 

Nowadays heterogeneous clusters of workstations are becoming an important source of com- 
puting resources. Two approaches have been addressed to make effective use of such resources. 
One approach provides efficient resource management by allowing users to run their jobs on 
idle machines that belong to somebody else. Condor, developed at University of Wisconsin- 
Madison, is one such system. It monitors the activity on all participating machines, placing 
idle machines in the Condor "pool". Machines are then allocated from the pool when users 
send job requests to Condor. Machines enter the pool when they become idle, and leave when 
they get busy, i.e. the machines owner returns. When an executing machine becomes busy, 
the job running on this machine is initially suspended in case the executing machine becomes 
idle again within a timeout period. If the executing machine remains busy then the job must 
be migrated to another idle workstation in the pool or returned to the job queue. For a job to 
be restarted after migration to another machine a checkpoint file that allows the exact state 
of the process to be re-created is required. This design feature ensures the eventual com- 
pletion of a job. There are various priority orderings used by Condor for determining which 
jobs and machines are matched at any given instance. Based on these orderings, sometimes 
running jobs may be preempted to allow higher priority jobs to run instead. Condor is freely 
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Figure 2: Architecture of Condor-PVM 

available and has been used in a wide range of production environments for more than ten 
years. 

Another approach to exploit the power of workstation cluster is from the perspective of 
parallel programming. Research in this area has developed message passing environments 
allowing people to solve a single problem in parallel using multiple resources. One of the 
most widely used message passing environments is PVM that was developed at the Oak Ridge 
National Laboratory. PVM transparently handles all message routing, data conversion and 
task scheduling across a network of incompatible computer architectures. The goal of PVM is 
to make programming for a heterogeneous collection of machines straightforward. The PVM 
system is composed of two parts. The first part is a daemon which resides on all the computers 
making up the virtual machine. A virtual machine is created in each computer where PVM 
applications run on. The second part of the system is the PVM library. It contains user- 
callable routines for message passing, process spawning, virtual machine modification and 
task coordination. A similar message passing environment is MPI [14]. Both systems center 
around a message-passing model, providing point-to-point as well as collective communication 
between distributed processes. The primary differences between the systems lie in their views 
of the parallel computer. PVM's design centers around the idea of a virtual machine. This 
virtual machine is very general and can encompass a nearly arbitrary collection of computing 
resources, from desktop workstations to multiprocessors to massively parallel homogeneous 
supercomputers. To provide uniform access to such a complex set of resources, PVM provides 
process control and resource management functions that allow spawning and termination 
of arbitrary processes and the addition and deletion of hosts at runtime. This flexibility, 
however, comes at, the expense of communication performance. MPI foregoes this flexibility 
in favor of optimal communication performance. 

The development of resource management system and message passing environment has 



been independent of each other for many years. Unfortunately, existing resource management 
systems usually cannot bring resources together and message passing environments are not 
able to use resources efficiently. Researchers at the University of Wisconsin-Madison recently 
developed a parallel programming framework which interfaces Condor and PVM [22, 6]. The 
reason to select PVM instead of MPI is that the implementation of MPI has no concept 
of process control, hence cannot handle resource addition and retreat in a opportunistic 
environment. Figure 2 shows the architecture of Condor-PVM. There are three processes 
on each machine running a Condor-PVM application: PVM daemon, Condor process and 
user application process. The Condor-PVM framework still relies on the PVM primitives 
for application communication, but provides resource management which is suited to the 
opportunistic environment provided by Condor. Each PVM daemon has a Condor process 
associated with it, acting as the resource manager. The Condor process interacts with PVM 
daemon to start tasks, send signals to suspend, resume and kill tasks, and receive process 
completion information. The Condor process running on the master machine is special. 
It communicates with Condor processes running on the other machines, keeps information 
about the status of the machines and forwards resource requests to Condor central manager. 
This Condor process is called the global resource manager. When a Condor-PVM application 
asks for a host, the global resource manager communicates with Condor central manager to 
schedule a new machine. After Condor grants a machine to the application, it starts a Condor 
process (resource manager) and PVM daemon on the new machine. If a machine needs to 
leave the pool, the resource manager will send signals to the PVM daemon to suspend tasks. 
The master user application is notified of that via normal PVM notification mechanisms. 

Compared with a conventional dedicated environment, the Condor-PVM opportunistic 
environment has the following characteristics: 

1. There usually are a large amount of heterogeneous resources available for an application, 
but in each time instance, the amount of available resources is random, dependent on 
the status of machines managed by Condor. The resources are also competed for by 
owners and other Condor users. 

2. Resources used by an application may exit during its life cycle. 

3. The execution order of components in an application is highly non-deterministic, leading 
to different solution and execution times. 

Therefore a good Condor-PVM application should be tolerant to loss of resources (host 
suspension and deletion) and dynamically adaptive to the current status of Condor pool in 
order to make effective use of opportunistic resources. 

3.2    Parallel Scheme for FATCOP 

Three main approaches in designing parallel BB algorithms arc summarized in [13] . Approach 
1 consists of solving LP relaxations in parallel for each subproblem to accelerate the execution. 
This approach uses parallel LP solvers and the order of subproblems generated during the 
execution of BB algorithm is fixed. Approach 2 introduces parallelism when building the 
BB tree. It performs bounding operations on several subproblems simultaneously. This 
approach may affect the order of subproblems generated during the expansion of the BB 
tree. Hence more or less subproblems could be evaluated by the parallel program compared 
with its sequential version.   Such phenomena are known as search anomalies.   Approach 3 
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consists of building several BB trees in parallel. The trees are built up by applying different 
operations such as branching and searching. The information generated when building one 
tree can be used for the construction of another. We choose the second approach to implement 
FATCOP, since it is widely used and appropriate for the implementation under Condor-PVM 
framework. 

One more concern about the parallel BB algorithm is central versus decentralized control. 
Recall in section 2 we used the notion of work pool, which is a memory location where 
processors find and store the subproblems that are not yet examined yet. The centralized 
parallel BB program has a single work pool and is usually implemented by using the master- 
slave paradigm. One processor, called the master manages the work pool, and sends pieces of 
work out to other processors, called slaves, that do some computation, and send the results 
back to the master. This centralized parallel scheme suffers from a "bottleneck". When 
using a large number of processors, the master can become a bottleneck in processing the 
returned information, thus keeping slaves idle for large amounts of time. In decentralized 
programs, each processor has its own local work pool. Sometimes these kind of programs are 
called multi-pool programs, while centralized programs are called single-pool programs. The 
central issue of this parallel scheme is load balancing. The parallel algorithm must make sure 
that some processors do not run out of work while others have a large amount of tasks. 

The Condor-PVM environment allows us to design both multi-pool and single-pool pro- 
grams, since each machine in Condor pool has its own memory location. However, multi-pool 
programs do not lend themselves to the Condor opportunistic environment. In such an envi- 
ronment, any of the machines could be preempted and therefore disappear at any moment. 
The pool of problems associated with the disappeared machine will be lost. A multi-pool 
program usually allows communication between processors to exchange subproblems. This 
feature makes it even harder for the program to keep track of the lost problems. On the 
other hand, the master-slave model, as an example of single-pool program, can handle re- 
source retreat well. The idea is that the master keeps track of which subproblem has been 
sent to each slave, and does not actually remove the subproblem out of the work pool. All 
the subproblems which are sent out are marked. If the master is then informed that a slave 
has disappeared, it unmarks the subproblems assigned to that slave. 

The remaining design issue is how to use the opportunistic resources provided by Condor 
to adapt to changes in number of available resources. The changes include newly available 
machines, machine suspension and resumption and machine failure. We hope to find a good 
design that can handle changes in the size of the virtual machine naturally. In a conventional 
dedicated environment, a parallel application usually is developed for running with a fixed 
number of processors and the solution process will not be started until the required number 
of processors are obtained and initialized. In Condor's opportunistic environment, doing so 
may cause a serious delay. In fact the time to obtain the required number of new hosts from 
Condor pool can be unbounded. Therefore we implement FATCOP in such a way that the 
solution process starts as soon as it obtains a single host. The solver then attempts to acquire 
new hosts as often as possible. At the beginning of the program, FATCOP places a number 
of requests for new host in Condor. Whenever it gets a host, it requests a new host. Thus, 
in each period between when Condor assigns a machine to FATCOP and when the new host 
request is received by Condor, there is at least one "new host" request from FATCOP waiting 
to be processed by Condor. This greedy implementation makes it possible for a FATCOP 
job to collect a significant amount of hosts during its life cycle. 

11 



3.3 Differences between PVM and Condor-PVM programming 

Regular PVM and Condor-PVM are binary compatible with each other. The same binary 
which runs under regular PVM will run under Condor, and vice-versa. However there exist 
some run time differences between regular PVM and Condor-PVM. The most important 
difference is the concept of machine class. In a regular PVM application, the configuration 
of hosts that PVM combines into a virtual machine usually is defined in a file, in which 
host names have to be explicitly given. Under the Condor-PVM framework, Condor selects 
the machines on which a job will run, so the dependency on host names must be removed 
from an application. Instead the applications must use class names. Machines of different 
architecture attributes belong to different machine classes. Machine classes are numbered 0, 
1, etc. and hosts are specified through machine classes. A machine class is specified in the 
submit-description file that is submitted to Condor. 

Another difference is that Condor-PVM has "host suspend" and "host resume" notifica- 
tions in addition to "host add", "host deletion" and "task exit" notifications that normal 
PVM has. When Condor detects activity of a workstation owner, it suspends all Condor 
processes running there rather than killing them immediately. If the owner remains for less 
than a pre-specified cut-off time, the suspended processes will resume. To help an application 
to deal with this situation, Condor-PVM make some above extensions to PVM's notification 
mechanism. 

The last difference is that adding a host is non-blocking in Condor-PVM. When a Condor- 
PVM application requests a new host be added to the virtual machine, the request is sent to 
Condor. Condor then attempts to schedule one from the pool of idle machines. This process 
can take a significant amount of time. If there are no machines available in Condor's pool, the 
delay can be longer. Therefore, Condor-PVM handles requests for new host asynchronously. 
The application can start other work immediately after it sends out a request for new host. It 
then uses the PVM notification mechanism to detect when the request has completed. People 
interested in developing Condor-PVM applications should pay attention to these differences. 
The documentation about the differences and a sample example code can be found in [6] and 
Condor manual website at 

http://www.cs.wisc.edu/condor/ 

FATCOP is first developed as a regular PVM application, and modified to exploit Condor- 
PVM. 

3.4 Parallel Implementation of FATCOP 

FATCOP consists of two separate programs: the master program and the slave program. 
The master program runs on the. machine on which the job was submitted to Condor. This 
machine is supposed to be stable for the life of the run, so it is generally the machine owned 
by the user. The design of FATCOP makes the program tolerant to any type of failures for 
workers, but if the machine running the master program crashes due to either system reboot 
or power outage, the program will be terminated. To make FATCOP tolerant even of the 
master's failure, the master program writes information about subproblems in the work pool 
periodically to a log file on the disk. Each time a FATCOP job is started by Condor, it reads 
in the MIP problem as well as the log file that stores subproblem information. If the log file 
does not exist, the job starts from the top of the search tree. Otherwise, it is warm started 
from some point in the search process.  The work pool maintained by the master program 
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Figure 3: Interactions among Condor, FATCOP and GAMS 

has copies for all the subproblems that were sent to the slaves, so the master program is able 
to write complete information about the BB process to the log file. 

Copies of the slave program run in the machines selected by Condor. The number of 
copies of running slave programs changes over time during the execution of a FATCOP job. 

3.4.1     The Master Program 

FATCOP can take both MPS and GAMS models as input. The interactions among Condor, 
FATCOP and GAMS are described as follows. A user starts to solve a GAMS model in the 
usual way from the command line. After GAMS reads in the model, it generates an input 
file. Control then is given to the user's control file, which usually is a shell or PERL script. 
The script generates a Condor submit-description file and submits the job to Condor. The 
submit-description file specifies the program name, input file name, requirement on machines' 
architecture, operating system and memory etc. After submitting the job the script reads a 
log file periodically until the submitted job is finished by Condor. The log file is generated 
by Condor and records the status of the finished and executing jobs. Finally the script gives 
control back to GAMS. GAMS then reports the solutions to the user. This process is depicted 
in Figure 3. 

The MIP model is stored globally as an LP and integrality constraints. The master 
program first solves the LP. If it is infeasible or the solution satisfies the integrality constraints, 
the master program stops. Otherwise, it starts a sequential MIP solve process until there are 
N subproblems in the work pool. TV is a pre-defined number, which has a default value and 
can be modified by users. This process is based on the observation that using parallelism 
as soon as few subproblems become available may not be a good policy, since doing so may 
expand more nodes compared to the sequential algorithm. In order to use all processors as 
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Figure 4: Message passing inside FATCOP 

soon as possible while avoiding giving them subproblems that only have a small chance of 
leading to an optimal solution, we let the master perform a sequential algorithm up to a 
point where N subproblems are available. The work pool consists of solved subproblems. 
Associated with each subproblem is the LP relaxation solution and value, modified bound 
information for the integer variables, pseudocosts used for searching and an optimal basis, 
which is used for warm starting the simplex method. The subproblems in the work pool 
are multi-indexed by bound, pseudocost-estimation and the order in which they entered the 
pool. The indices correspond to different searching rules: best-first, pseudocost-estimation 
and depth-first. 

Following the initial subproblem generation stage, the master program sends out a number 
of requests for new hosts. It then sits in a loop that repeatedly does message receiving. 
The master accepts several types of messages from workers. The messages passing within 
FATCOP are depicted in Figure 4. 

After all workers have sent solutions back and the work pool becomes empty, the master 
program kills all workers and exits itself. 

Host Add Message. After the master is notified of getting a new host, it spawns a child 
process there and sends an LP copy as well as a subproblem to the new child process. The 
subproblem is marked in the work pool, but not actually removed from it. Thus the master is 
capable of recovering from several types of failures. For example, the spawn may fail. Recall 
that Condor takes the responsibility to find an idle machine and starts a PVM daemon on it. 
During the time between when the PVM daemon was started and the message received by 
master program, the owner of the selected machine can possibly reclaim it. If a "host add" 
message was queued waiting for the master program to process other messages, a failure for 
spawn becomes more likely. 
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The master program then sends out another request for a new host if the number of 
remaining subproblems is at least twice as many as the number of workers. The reason for 
not always asking for new host is that the overhead associated with spawning processes and 
initializing new hosts is significant. Spawning a new process is not handled asynchronously 
by Condor-PVM. While a spawn request is processed, the master is blocked. The time to 
spawn a new process usually takes several seconds. Therefore if the number of subproblems 
in the work pool drops to a point close to the number of workers, the master will not ask for 
more hosts. This implementation guarantees that only the top 50% "promising" subprob- 
lems considered by the program can be selected for evaluation. Furthermore, when the BB 
algorithm eventually converges, this implementation prevents the program from asking for 
excess hosts. However, the program must be careful to ensure that when the ratio of number 
of remaining subproblems to number of hosts becomes bigger than 2, the master restarts 
requesting host additions. 

Solution Message. If a received message contains a solution returned by a worker, the 
master will permanently remove the corresponding subproblem from the work pool that was 
marked before. It then updates the work pool using the received LP solutions. After that, the 
master selects one subproblem from the work pool and sends it to the worker which sent the 
solution message. The subproblem is marked and stays in the work pool for failure recovery. 
Some worker idle time is generated here, but the above policy typically sends subproblems 
to workers that exploit the previously generated solution. 

Host Suspend Message. This type of messages informs the master that a particular ma- 
chine has been reclaimed by its owner. If the owner leaves within 10 minutes, the Condor 
processes running on this machine will resume. We have two choices to deal with this situ- 
ation. The master program can choose to wait for the solutions from this host or send the 
subproblem currently being computed in this host to another worker. Choosing to wait may 
save the overhead involved in solving the subproblem. However the waiting time can be as 
long as 10 minutes. If the execution time of a FATCOP job is not significantly longer than 
10 minutes, waiting for a suspended worker may cause a serious delay for the program. Fur- 
thermore, the subproblems selected from the work pool are usually considered "promising". 
They should be exploited as soon as possible. Therefore, if a "host suspend" message is 
received, we choose to recover the corresponding subproblems in the work pool right away. 
This problem then has a chance to be sent to another worker shortly. If the suspended worker 
resumes later, the master program has to reject the solutions sent by it in order that each 
subproblem is considered exactly once. 

Host Resume Message. After a host resumes, the master sends a new subproblem to it. 
Note that the master should reject the first solution message from that worker. The resumed 
worker picks up in the middle of the LP solve process which was frozen when the host was 
suspended. After the worker finishes solving the LPs, it sends the solutions back to the 
master. Since the associated subproblem had been recovered when the host was suspended, 
these solutions are redundant, hence should be ignored by the master. 

Host Delete/ Task Exit Message. If the master is informed that a host is removed from 
the PVM virtual machine or a process running on a host is killed, it recovers the corresponding 
subproblem from the work pool and makes it available to other workers. 
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Name #rows ^columns #nonzeros ^integers 
AIR05 426 7195 52121 7195 
BELL5 91 104 266 58 
BLEND2 274 353 1409 264 
FIBER 363 1298 2944 1254 
MAS76 12 151 1639 150 
MISC07 212 260 8619 259 
QIU 1192 840 3432 48 
STEIN45 331 45 1034 30 
V0D1 107 306 1207 303 
PRODI 211 301 10501 200 

Table 1: Summary of test problems 

3.4.2     Slave Program 

The slave program first receives a LP model from the master, then sits in an infinite loop 
to receive messages from the master. The messages from the master consist of the modified 
bound information about the subproblem P, the optimal basis to speed up the bounding 
operation, and the branching variable which is used to define the "up" and "down" children 
P+ and P—. The slave performs two bounding operations on P+ and P— and sends the 
results back to the master. The slave program is not responsible for exiting its PVM daemon. 
It will be killed by the master after the stopping criteria is met. 

4    Computational Experience 

One of FATCOP's goals is fault tolerance, i.e. solving MIP problems correctly using op- 
portunistic resources. The other design purpose is to let FATCOP be adaptive to changes 
in available sources provided by Condor in order to achieve maximum possible parallelism. 
Therefore the principle measures we use when evaluating FATCOP are correctness of solu- 
tions, and adaptability to changes in resources. Execution time should be another important 
performance measure, but it is affected by many random factors and heavily dependent on 
the availability of Condor's resources. For example a FATCOP job, that can be finished in 
one hour at night, may take 2 hours to finish during the day because of the high competition 
for the resources. In general, FATCOP should have shorter execution time than its serial 
version for long-running MIP problems. This is confirmed by the results presented in this 
section. 

FATCOP has been tested on a set of problems drawn from MIPLIB [18],an electronically 
available library of both pure and mixed integer programs arising from real applications. 
The selected problems have relatively large search trees, so that some parallelism can be 
exploited. Since Condor-PVM incurs some additional managerial and communication costs 
to a FATCOP job, some problems with small search trees can be solved faster by the FATCOP 
sequential program than its parallel version. We first used CPLEX [7] with default settings 
to solve the problems in MIPLIB. We then picked 8 problems which cannot be solved by 
CPLEX within 10.000 nodes. In order to demonstrate that FATCOP can also solve GAMS 
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Figure 5: Resource utilization for one run of FATCOP 

models, two problems formulated using GAMS are included in the test set. One problem 
vodS is an application to video on demand system design [8]. The other problem prodl is an 
application to product design [25]. These two problems are also insoluble in 10,000 nodes by 
the CPLEX default MIP solver. The sizes of the problem instances are shown in Table 1. 

4.1    Resource Utilization 

In Wisconsin's Condor pool there are more than 100 machines in our desired class. Such large 
amounts of resources make it possible to solve MIP problems with fairly large search trees. 
However the available resources provided by Condor change as the status of participating 
machines change. Figure 5 demonstrates how FATCOP is able to adapt to Condor's dynamic 
environment. We submitted a FATCOP job to solve air05 at 6:30am. The job was finished 
by Condor at about 13:10. Each time a machine was added or suspended, the program asked 
Condor for the number of idle machines in our desired machine class. We plot the number 
of machines used by the FATCOP job and the number of machines available to the job in 
Figure 5. In the figure, time goes along the horizontal axis, and the number of machines 
is on the vertical axis. The solid line is the number of working machines and dotted line is 
the number of available machines which includes idle machines and working machines used 
by our FATCOP job. At the start, there were many idle machines in Condor pool. The 
job quickly got about 20 machines and eventually collected more than 40 machines with a 
speed of roughly one new resource every minute. However it was not able to acquire many 
machines after 7:00am and lost a large amount of machines between 8:00 to 9:00. There 
were some newly available resources at 8:30 and 10:00, but they became unavailable again 
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Run Starting time Duration ■*-Ja.vg Number of suspensions 
1 06:30 6.7 hrs 28 45 
2 08:15 6.8 hrs 31 51 
3 14:55 6.1 hrs 46 43 
4 15:02 6.1 hrs 42 50 
5 20:10 5.9 hrs 61 39 
6 21:42 6.0 hrs 51 58 

Table 2: Average number of machine and suspensions for 6 FATCOP runs 

quickly, either reclaimed by owners or scheduled to other users by Condor. At about 12:00, 
another group of machines became available and stayed idle for a relatively long time. The 
job thus acquired some additional machines during that time. In general, the number of idle 
machines in Condor pool had been kept at a very low level during life cycle of the FATCOP 
job except during the start-up phase. When the number of idle machines stayed high for 
some time, FATCOP was able to quickly increase the size of its virtual machine. We believe 
these observations exhibit that FATCOP can utilize opportunistic resources very well. 

To get more insight about utilization of opportunistic resources by FATCOP, we define 
the average number of machines used by a FATCOP job Eavg as: 

E,na* 

E   krk 
k=\ E      = 

where r^ is the total time when the FATCOP job has k workers, T is the total execution 
time for the job, Emax is the number of available machines in the desired class. We ran 6 
replications on air05. The starting time of these runs is distributed over a day. In Table 2 
we record the average number of machines the FATCOP job was able to use and number 
of machines suspended during each run. The first value shows how much parallelism the 
FATCOP job can achieve and the second value indicates how much additional work had to 
be done. In general the number of machines used by FATCOP is quite satisfactory. For run 
5, this value is as high as 61 implying that on average FATCOP used about 60% of the total 
machines in our desired class. However, the values vary greatly due to the different status 
of the Condor pool during different runs. In working hours it is hard to acquire machines 
because many of them are used by owners. After working hours and during the weekend 
only other Condor user's are our major competitors. As expected FATCOP lost machines 
frequently during the daytime. However during the runs at night FATCOP also lost many 
machines. It is not surprising to see this, because the more machines FATCOP was using, 
the more likely it would lose some of them. 

4.2     Fault tolerance 

For all the test problems in Table 1 except bell5, FATCOP was configured to use pseudocost 
branching and pseudocost-estimation based mixed searching strategy (strategy 5). It turned 
out that depth-first based mixed strategy (strategy 4) worked best for bell5. We performed a 
trial solve for each problem to decide the value of U as introduced in section 2.2. Recall U = oo 
implies a pure pseudocost-estimation search, and U = 0 implies a pure best-first search. The 

18 



Name Solution Provable Execution Tree U 
gap(%) optimal? time size 

AIR05 2 no 8 hrs 1,615 oo 
BELL5 0 yes S.lhrs 71,823 1 
BLEND2 0 yes 9.9 min. 1,548 0 
FIBER 57 no 8 hrs 120,432 00 

MAS 76 0 no 8 hrs 162,176 00 

MISC07 0 yes 1.9 hrs 10,785 6 
QIU 0 no 8 hrs 22,004 3 
STEIN45 0 yes 3.5 hrs 52,557 1 
V0D3 0 yes 30.2 min 6,201 7 
PRODI 3 no 8 hrs 32,524 00 

Table 3: Results obtained by the FATCOP sequential solver 

Name Execution time Tree size F, # of suspensions 
AIR05 6.0 hrs 4,142 46 51 
BELL5 41.8 mins 39,026 20 19 
BLEND2 11.0 mins 2,589 10 0 
FIBER 4.5 hrs 231,887 52 81 
MAS76 1.2 hrs 420,418 38 5 
MISC07 1.0 hrs 9,491 22 15 
QIU 5.4 hrs 66,180 57 51 
STEIN45 1.3 hrs 55,110 41 17 
VOD3 19.5 min 6,540 11 1 
PRODI 5.5 hrs 98,227 48 49 

Table 4: Average results obtained by the FATCOP parallel Condor-PVM solver for 3 repli- 
cations (all instances are solved to optimality) 

Execution time Tree size 
sequential parallel sequential parallel 

BELL5 5.1 hrs 41.8 mins 71,823 39,026 
BLEND2 9.9 min. 11.0 min. 1,548 2,598 
MISC07 1.9 hrs 1.0 hrs 10,785 9,491 
STEIN45 3.5 hrs 1.3 hrs 52,557 55,110 
VOD3 30.2 min 19.5 min 6,201 6,540 

Table 5: Comparison between the FATCOP sequential and parallel solver for the problems 
solved to optimality by both 
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parameters for computing scores of branching variables are set as follows: O.Q = 100,«i = 1, 
and a2 = 1- The MIPLIB files do not provide branching priorities, so the value of «o is 
irrelevant to problems from MIPLIB. However the priority information about integer variables 
is critical to solve vod in a reasonable amount of time. 

We first solved the problems in Table 1 using the FATCOP sequential solver on a SUN 
Sparc SOLARIS2.6 machine. Each run was limited by 8 hours. We present the results in 
Table 3. The first column in the table shows the relative difference between the best solution 
found by the FATCOP sequential solver and the known optimal solution. If the optimal 
solution is found, column 2 shows whether the solution is a proven optimal solution or not. 
Execution time in column 3 is clock elapsed time, and does not include GAMS compilation 
and solution report time. Tree size at the time when the program was terminated is given in 
column 4. The last column reports the parameter U we set for each problem. The FATCOP 
sequential solver is able to find provable optimal solutions for half of the test problems. 

The test problems then were solved by the FATCOP parallel Condor-PVM solver. The 
number of problems N generated in the initial stage was set to 20. At the beginning the 
master sends 40 requests for new hosts to Condor. FATCOP implements an asynchronous 
algorithm, hence communication may occur at any time and is unpredictable. Furthermore, 
the number of workers in the life cycle of a FATCOP job keeps changing so that the BB 
process may not follow the same path for different executions. Our experiments show that 
the search trees were almost never expanded in the same order for a given problem. This 
feature often leads FATCOP to different execution time. We ran 3 replications for each 
problem. For all the runs, FATCOP found provable optimal solutions for the test problems, 
including fiber that can not be solved effectively by the sequential solver. We report the 
average execution time, search tree size, resource utilization and resource losses in Table 4. 
For all runs except four, FATCOP lost some workers, but the program recovered correctly 
and returned correct solutions. Therefore FATCOP was tolerant to the resource retreats in 
our experiments. During one run for solving fiber, FATCOP lost many machines because it 
ran over the daily Computer Sciences Department reboot period. 

We compare the results obtained by sequential solver on problems that it solved to op- 
timality with those obtained by the parallel solver in Table 5. Of the problems solved to 
optimality by the FATCOP sequential solver, blend2 solves quicker using the sequential code, 
between the sequential and parallel solver. Stein45 and vodS require a few more node eval- 
uations (but less time) by the parallel solver, while bell5 and miscOl solve quicker with the 
parallel solver. Run time for bell5, stein45, vodS and miscOl is reduced by factors between 
0.6 — 6.5. Table 4 shows that FATCOP was able to collect many machines during its ex- 
ecution, but many factors prevent further speedup. These factors include long starvation 
for workers, enlarged search trees, resource failures, and inefficient communication due to 
PVM's nature. For blend2, the parallel solver even took longer than the serial code to solve 
the problem. We keep this problem in the test set to show that it is only beneficial to use 
FATCOP to solve long-running complex MIPs. 

The last experiment we performed submitted a long-running MIP problem to Condor. The 
problem we solved vpml is also from MIPLIB that has 234 constraints and 378 variables, of 
which 168 are integers. The FATCOP sequential solver could not find the provable optimal 
solution for this problem in 8 hours. We configured the parallel solver to use pure pseudocost- 
estimation searching and pseudocost branching. Our experiments showed that pseudocost- 
estimation searching strategy usually keeps a very small work pool, so the program requires 
small memory and takes relatively short time to write the work pool information to the disk. 

20 



The strategy also is able to find good feasible solutions quickly, so it is particularly suitable 
for long-running big problems. The job finished in 39.2 hours with provable optimality. It ran 
over two Computer Sciences Department daily reboot periods, used 21 machines on average 
and had 447 machines suspended during the run. To test fault tolerance of the master, 
we let FATCOP record the work pool information to disk every 100,000 node evaluations.. 
We interrupted the job once (to simulate a master failure) and re-submitted the problem 
to Condor. FATCOP then read in the MIP problem as well as the work pool information, 
and started from where the work pool information was last recorded. This indicates that 
FATCOP is tolerant to both worker and master failures. 

5 Summary 

MIPs often represent critical decision problems in industry, but many of them cannot be 
solved sequentially on a single computer. In this paper, we provide a parallel implementation 
for MIPs using distributed privately owned workstations. 

The solver, FATCOP, is designed in the master-slave paradigm to deal with different types 
of failures in a distributed ownership environment with the help of Condor, a resource man- 
agement system. To harness the available computing power as much as possible, FATCOP 
uses a greedy strategy to acquire machines. 

FATCOP has successfully solved some real life MIP problems such as the applications to 
video on demand system design [8] and product design [25]. It was also tested on a set of 
standard test problems from MIPLIB [18]. FATCOP was able to solve some problems which 
can not be solved by its sequential version, and achieved speedup of factors between 0.6 — 6.5 
for some reasonable large problems soluble by its sequential version. We leave experiments 
on MIP problems requiring days or months of computation as future work. Problems with 
extremely large search trees were excluded from our test set, since they remained insoluble in 
a reasonable amount of time. Solving such problems may require some specialized techniques. 
For example recent work that combines BB with cutting planes has been very successful [5]. 
Adding cutting planes at the top of node for BB algorithm can substantially reduces the size 
of the search tree, and the overall computation time. This cut-and-branch framework might 
be used in a future version of FATCOP. 
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